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Abstract
Rice harvesting in Bangladesh is impacted by the absence of advanced harvesting technologies, high labor costs, and 
natural calamities, which frequently interrupt the harvesting schedule. Mechanized harvesting methods, such as combine 
harvesters, could enable large-scale, efficient harvesting with reduced labor dependency. However, the use of such machinery 
is complicated by the varying and limited size of rice fields across the country. This research aimed to develop a suitable land 
classification map for combine harvester operations using satellite-derived digital elevation models (DEM) and soil physical 
property datasets at Kalikoir, Gazipur, Bangladesh, which will identify the most suitable rice fields for quick and efficient 
harvesting. The study considered eight thematic layers for developing the model, including sand, silt, clay, soil bulk density, 
soil moisture, dry density of soil, water holding capacity, and slope. The relative weight of selected layers was determined 
using the extra tree classifier machine learning algorithm within the Jupiter environment. The land classification map was 
subsequently generated using a weighted overlay analysis technique within the ArcGIS environment. The resulting map 
revealed that 1.88  km2 (19.84%) was highly suitable for combine harvester use, 4.16  km2 (43.53%) was moderately suitable, 
2.67  km2 (27.43%) had limited suitability, and 0.86  km2 (9.19%) had very limited suitability. The classification map was 
validated using a ground truth dataset with several performance metrics, including overall accuracy, precision, recall, F1 
score, and threat score. The model demonstrated robust performance with an overall accuracy of 71%, precision of 85%, 
recall of 79%, F1 score of 81%, and threat score of 69%. A further assessment of accuracy using area under curve (AUC) 
measures indicated a 60% success rate. The results provide valuable and precise insights that can benefit commercial combine 
harvester users, farmers, and policymakers, helping to identify optimal rice-harvesting locations in Bangladesh. This in turn 
can support more effective resource allocation, reduce costs, and ultimately enhance rice production yield in the country.
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Introduction

Rice is a critical cereal crop both economically and 
in terms of national food security for Bangladesh. It 
comprises half of the nation’s agricultural GDP and 
accounts for one-sixth of its overall income. Across the 
country, approximately 10.5 million hectares of land are 
dedicated to rice cultivation, maintained by 13 million 
farming families. Several challenges complicate the 
harvesting process, including shortages of workers, high 
labor costs, and the migration of agricultural workers to 
garment/textile or non-farm activities, which can delay 
harvest activities (Zhang et al. 2014). Furthermore, natural 
disasters and a lack of modern farming equipment often 
result in crop loss during harvest (Shelley et al. 2016). 
The combine harvester emerges as an effective solution 
to these issues, offering rapid, labor-saving, and efficient 
rice harvesting. It also has the potential to increase total 
production (Constable and Somerville, 2003). In addition 
to this, the use of a combine harvester can reduce harvest 
losses and cut production costs by as much as 52% (Hasan 
et  al. 2019). However, the performance of combine 
harvesters is highly dependent on field conditions. 
Specifically, fields that are excessively wet, muddy, or 
waterlogged are not suitable for combine harvesters 
(Colton et al., 2021). In such circumstances, the efficiency 
of these machines diminishes, necessitating more time 
and labor for harvesting. Therefore, to circumvent these 
problems, it is crucial to establish an appropriate land 
assessment strategic plan. This plan would optimize the 
use of agricultural machinery and ensure that it is deployed 
in the most beneficial and efficient manner.

Over the past few decades, continuous agricultural 
land use without considering land evaluation assessments 
has led to significant land degradation. Land evaluation 
assessment involves the systematic process of determining 
the suitability of a piece of land for various uses, such 
as agriculture, forestry, urban development, conservation, 
or recreational purposes. In order to prevent further 
damage, it is essential to establish land suitability 
classification methods. These methods should consider 
water accessibility, soil management practices, and 
plant adaptability (Ziadat & Al-Bakri 2006). The 
soil condition plays a pivotal role in determining the 
efficiency of agricultural machinery (Abdel & Elzain 
2007; Ohu et  al. 1987). Key soil physical properties, 
including moisture, texture, structure, porosity, pore-
size distribution, available water content, and bulk 
density, broadly influence the functioning of agricultural 
equipment (Lal 1995). Furthermore, other factors such as 
field size, shape, solid-continuous void organization, and 
pressure can also impact crop productivity. As agricultural 

technology becomes increasingly vital to securing an 
adequate food supply, identifying lands suitable for farm 
machinery becomes an important strategy. This approach 
is effective for promoting sustainable agriculture and 
critical for poverty reduction and ensuring food security 
by enhancing profitability of grain production (Yang et al. 
2023). Therefore, developing and implementing strategies 
to detect and utilize suitable lands for farm machinery 
are a crucial step in promoting sustainable and profitable 
agricultural practices.

Land suitability assessment is a process that evaluates and 
classifies different areas of land based on its appropriateness 
for a particular purpose (Lee & Yeh 2009; Martin & Saha 
2009; Yigeltu & Alemu 2022). This process plays an 
essential role in understanding the relationship between the 
characteristics of a land parcel and its potential usage (Beek 
1980). Performing land suitability assessments can lead 
to improved land use planning, decrease soil degradation, 
and foster the design of land use structures that minimize 
environmental challenges by separating conflicting land uses 
like, land use zoning and land use segregation (Ziadat 2007). 
It also reveals existing constraints that may hinder land use, 
providing a comprehensive overview of the land’s potential 
and limitations (Ziadat & Al-Bakri, 2015; Ziadat & Sultan 
2011). Therefore, land suitability assessment is a critical tool 
for utilizing land resources effectively. By understanding the 
land’s strengths and limitations, land managers can plan its 
use more wisely, mitigate potential environmental issues, 
and optimize its value for a specific purpose.

Land suitability evaluations have utilized a wide variety 
of factors, including slope, soil type, land use, land cover, 
drainage, soil texture, soil depth, soil electrical conductivity, 
calcium content, organic matter, and climate (Møller et al. 
2021; Radocaj et al. 2020; Radocaj et al. 2021; Sultan 2013; 
Taghizadeh-Mehrjardi et al. 2020; Yigeltu & Alemu 2022). 
Moreover, numerous analytical methodologies have been 
employed by researchers to determine the most suitable land 
for agricultural machinery (AL-Taani et al. 2021; Mazahreh 
et al. 2019). Several techniques, such as spatial assessment, 
qualitative description, and advanced practices like 
hierarchical analytic procedures, dynamic system models, 
and other multi-criteria analysis techniques, have been used 
for land suitability assessments (Morales & de Vries 2021; 
Pilevar et al. 2020; Seyedmohammadi et al. 2019). However, 
traditional land suitability assessments often utilize 
limiting factors typically established by experts drawing 
on historical research and experience (Ziadat 2007). This 
conventional method, while thorough, often necessitates 
extensive computations and considerable time to produce 
reliable results (Mokarram et al. 2015). To overcome these 
limitations, some researchers have turned to machine 
learning algorithms, which can offer more efficient and 
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scalable solutions compared to traditional methods (Almansi 
et al. 2021; Hernandez 2020; Møller et al. 2021; Radocaj 
et al. 2020; Radočaj et al. 2021; Taghizadeh-Mehrjardi et al. 
2020). For instance, the study by Yang et al. (2023) employs 
a machine learning technique, specifically the extra trees 
classifier, to evaluate land suitability for combine harvesters. 
This machine learning technique represents a modern, data-
driven approach to land suitability assessment that can 
potentially deliver more accurate results.

Bangladesh needs more land suitability analyses 
specifically for agricultural machinery (Binte Mostafiz 
et al. 2021; Haque et al. 2022; Hossen et al. 2021; Perveen 
et al. 2005). A key strategy for enhancing mechanization 
and consequently boosting agricultural production involves 
identifying well-suited lands for such machinery (Yang 
et  al. 2023). Utilizing data on agricultural machinery 
usage, combined with spatial soil physical attributes, could 
provide information for such assessments. In this context, 
the primary aim of this study was to develop a suitable land 
classification map for the operation of combine harvesters 
at the Kalikoir, Gazipur, Bangladesh. Ultimately, this 
approach should identify the most suitable rice fields for 
efficient harvesting operations using a combine harvester 
and may result in substantial benefits, including reducing 
human drudgery and harvesting costs, saving time, and 
increasing crop productivity. Using this strategic approach to 
land suitability analysis, the effectiveness of mechanization 
in Bangladesh’s agriculture sector can be optimized, and 
significant strides toward enhancing national food security 
will be made.

Materials and Methods

Study Area

The study area is Kaliakoir Upazila, Gazipur district, Bang-
ladesh, which geographically lies between latitudes 24°15′ 
N and 90° 22′ E. The region comprises nine unions, 181 
Mouza, and 283 villages (BBS 2020). The Kaliakoir rises 
35 m above sea level (Fig. 1). The topography of the study 
area is lowland to medium plains, with gentle slopes along 
the northern part, moderately steep slopes in the western 
region, and steeper slopes in the center of the southeast parts. 
The major crops grown in this area include rice, wheat, jab, 
barley, cheena, maize, kaun, bajra, and joar, covering 233.19 
 km2. The region experiences the effects of a monsoon cli-
mate, with average annual temperatures ranging from 12.7 
to 36 °C and precipitation of 2376 mm (BBS 2011). The 
study area belongs to complex relief, and the soils developed 
over the Madhupur Clay. The region has eleven soil types, 
including deep red-brown, shallow red-brown, and acid 
basin clays. The terrace soils are well-drained, friable clay 

loams to clays over coarse clay with various depths. Red or 
brown top soils are mostly slightly acidic to very acidic, with 
moderate to low organic compounds, poor moisture retention 
ability, and low soil fertility. However, land degradation has 
become an urgent problem that limits production on soils 
with irregular and complex topography (Yang et al. 2023). 
Therefore, it is crucial to use land suitability classification 
techniques to increase agricultural productivity within the 
studied region.

Data Collection and Analysis

Soil Data Collection

The physical properties of the soil, such as sand, silt, clay, 
bulk density, soil moisture, dry soil density, and water hold-
ing capacity, were used to make a suitable land classification 
map for the combine harvester. The soil sample datasets were 
collected from selected fields in a soil container during the 
Boro rice harvesting season in 2022. A global position sys-
tem (GPS) receiver (GPSMAP 64x, Garmin Ltd., Olathe, KS, 
USA) provided the latitude and longitude of the target fields. 
The Yanmar combine harvester (model AG600) was chosen 
based on the availability of combine harvesters in the study 
region. Soil samples were collected after the operation of the 
combine harvester in the field. Samples from each point were 
collected using a shovel, transferred to a container box, and 
labeled as suitable or not suitable based on the field condi-
tion after the combine harvester operation. When the combine 
harvester worked smoothly without any troubles, the samples 
were rated as suitable (1), and when it did not, they were rated 
as unsuitable (0). Each soil sample was marked with their 
respective latitude and longitude coordinates (Khatri 2019). 
Following soil sample collection, a standard laboratory pro-
cedure was used to analyze the soil samples at the Bangladesh 
Rural Advancement Committee (BRAC) Soil Analytical Lab.

Analysis of Soil

The details of the analysis of soil datasets are shown in 
Table 1. The soil physical property datasets comprised the 
combine harvester’s land suitability classification map. The 
suitability map was generated using different soil datasets, 
including sand, silt, clay, bulk density, dry density, moisture 
content, and water holding capacity. By understanding soil 
formation, it is possible to improve the soil’s health, the 
efficiency of land use, and the ecological sustainability of 
an area (Yan et al. 2019). The texture of the soil (sand, silt, 
or clay) affects the movement of water, the transformation 
and translocation of nutrients, and many other things. The 
soil texture also governs the soil water holding character-
istics, which affects its workability and suitability for crop 
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Fig. 1  Location map of the study area
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production. This study used the hydrometer procedure for 
measuring particle size to determine the percentages of sand, 
silt, and clay. The standard method is more laborious but 
reliable than alternative approaches (Williams-caudle et al. 
2003).

Bulk density is the ratio of the weight (Ws) and volume 
(Vs) of dry soil. The volume contains soil particles, organic 
materials, pores, and particle packing (Arshad et al. 2018). 
Loose and porous soils with high organic material have a 
lower bulk density. In contrast, increasing soil compression 
leads to higher bulk density, which can impede infiltration 
of water (Ohu et  al. 1987). Greater soil bulk density 
also increases wheel slippage and fuel consumption of 
agricultural machinery, while reducing speed of operations 
(Abdel & Elzain 2007). However, agricultural equipment 
performs much better on solid soil than loose soil. Bulk 
density was calculated using the following formula:

where � is the soil bulk density and Ws and Vs refer to the 
weight and volume of dry soil, respectively.

(1)� =
Ws

Vs

The ratio of the mass of soil solids to the volume is 
called dry density when the soil is in a dry condition. The 
soil mass is typically composed of air, water, and solids 
from the soil. The dry density will vary with the clas-
sification and characteristics of the soil and indicate the 
soil’s mineral properties and compaction (Lestariningsih 
et al. 2013). Higher compaction levels result in a higher 
dry density of the soil. In contrast, higher soil dry density 
corresponds to lower moisture content. The dry density 
was calculated using the below expression (2):

Here, �d is the dry soil density,  MS is the mass of the 
soil solids, and  VT is the per unit volume of solid soil.

The ratio of the mass of water to the mass of solids in 
the soil sample is called soil moisture content. The amount 
of water in the soil dramatically affects the soil’s physical 
properties. Although a higher soil moisture level often results 
in a lower specific draft demand and noticeable variances in 
traction performance across tested machinery, this condition 
may be ideal for particular crops and production technologies 

(2)�d =
Ms

VT

Table 1  Details of soil datasets 
used in this study

S and N indicate the suitable and not suitable sample points after the combine harvester operation

Serial N Sand 
(%)

Silt 
(%)

Clay 
(%)

Bulk density 
(g/cc)

Soil  
moisture (%)

Dry density 
(g/cc)

Water holding 
(%)

Remarks

1 35.67 51.33 13.00 1.69 29.91 1.30 74.00 S
2 33.50 50.83 15.67 1.44 38.28 1.04 76.00 S
3 34.75 47.75 17.50 1.53 28.92 1.18 68.00 S
4 38.43 43.28 18.29 1.61 32.33 1.22 71.00 S
5 34.38 50.94 14.69 1.75 22.23 1.43 72.00 S
6 33.33 51.28 15.38 1.57 26.88 1.28 74.00 S
7 35.79 44.47 19.74 1.68 27.45 1.31 72.00 S
8 37.26 46.41 16.32 1.61 29.43 1.25 72.14 S
9 37.97 46.64 15.39 1.55 32.37 1.17 72.00 S
10 36.73 48.54 14.79 1.62 27.92 1.28 72.71 S
11 36.03 47.85 16.12 1.61 29.23 1.25 72.38 S
12 37.28 46.65 16.08 1.61 29.57 1.25 72.19 S
13 36.17 47.23 16.60 1.67 25.52 1.34 72.67 S
14 37.19 46.70 16.12 1.61 29.23 1.25 72.23 S
15 37.40 45.53 17.07 1.47 44.10 1.02 68.00 N
16 35.00 45.50 19.50 1.56 28.75 1.21 72.00 N
17 39.24 41.77 18.99 1.53 42.47 1.07 66.00 N
18 36.25 43.75 20.00 1.40 50.82 0.93 67.00 N
19 36.97 45.89 17.14 1.49 41.54 1.06 68.25 N
20 37.12 45.66 17.22 1.45 48.34 1.07 68.34 N
21 36.96 45.87 17.17 1.48 42.67 1.06 68.27 N
22 38.98 42.78 18.24 1.52 43.67 1.09 67.67 N
23 37.35 45.37 17.30 1.49 42.79 1.06 68.19 N
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(Salokhe et al. 1992). The oven drying method was used to 
identify the soil moisture content by following the Eq. (3):

where MC is the soil moisture content (%), and M and D 
indicate the weight of moist and dry soil, respectively.

The soil’s ability to hold water against gravity is called its 
water holding capacity. A soil’s water holding capacity depends 
on its texture and organic content. Medium-textured soils with 
silt, clay, and sand particles and excellent aggregation have many 
pores that retain water against gravity. Coarse soils, which are 
primarily composed of larger particles like sand, typically have 
larger pore spaces between particles. These larger pores allow 
for better drainage and lower water retention compared to finer 
soils (Oduma et al. 2018). Even though fine-textured clay soils 
have many smaller holes that hold much water, the water is often 
too tightly packed in the tiny pores for plant roots to access it. 
The soil water holding capacity was calculated in weight basis 
the following Eq. (4).

where WC is the water holding capacity of the soil, and Ww 
and Dw have indicated the wet soil and dry weight of the 
soil, respectively.

Topographic Slope Data

The topographic slope parameter significantly influences land 
use patterns and geographical variations (Gobin et al. 2004; 
Solaimani et al. 2009). Slope plays a vital role in determining 
the suitability and capability of land for agriculture (Lacko-
Bartošová & Buday, 2013; Van Orshoven et  al. 2008). 
Generally, a slope exceeding 3.60–6.72% is deemed 
unsuitable for farming activities (Andersen et al. 2003), as 
the topography of agricultural systems profoundly impacts 
management restrictions (van Asselen & Verburg 2012). In 
this study, the ALOS PALSAR derived Digital Elevation 
Model (DEM) with a spatial resolution of 12.5 m (ASF 
2019) was used. For our analysis, slope was prioritized as the 
sole topographical criterion, due to its significant influence 
on the usage of agricultural machinery. Agricultural lands 
were characterized as having slopes less than 5%, and areas 
exhibiting slopes greater than 5% were excluded from our final 
map. Thus, the analysis focused on areas most amenable for 
agricultural use, as steeper slopes are generally impractical.

Generation of Thematic Layers

Thematic layer generation describes constructing geograph-
ical data layers that reflect distinct themes or subjects of 

(3)MC =
M − D

D

(4)WC =
Ww − Dw

Dw
∗ 100

interest. The soil datasets were used to generate continuous 
maps of each thematic layer. The inverse distance weight-
ing (IDW) method was employed to interpolate the soil 
data and make predictions at unknown locations using the 
Geostatistical Analyst tool in ArcMap. The IDW method 
predicted each ground attribute at each position to create a 
continuous map (Khatri 2019). Generally, the IDW method 
performs better with enough sample locations and a good 
spread at local scale levels (Murmu et al. 2019). Finally, 
each thematic layer was converted to a raster format and 
projected with a spatial resolution of 10 m × 10 m to the 
WGS_1984_UTM_Zone_46N coordinate system. The con-
tinuous map of each thematic layer was classified into five 
subclasses using the natural breaks (Jenks) classification 
method using the reclassification toolset. This method gen-
erated geostatistical maps and contains precise estimates of 
the data patterns.

Features Relative Importance

Feature relative importance may give insight into the data-
set by highlighting the most and least important features. 
A domain expert may analyze its relative importance and 
use it as the basis for gathering additional or alternative 
data. In this study, the extra tree classifier (ETC) machine 
learning algorithm was used to identify the relative impor-
tance of each feature. The extra tree classifier algorithm 
is an ensemble of binary decision trees where each tree 
uses its own technique to categorize new data (Melanson 
2020). In previous studies, including land cover classifica-
tion (Zafari et al. 2019), a multi-layer intrusion detection 
system utilizing Extra Trees (Sharma et al. 2019) used the 
extra trees classifier algorithm. Another study (Shafique 
et al. 2019) showed that the extra tree classifier was the 
best at predicting cardiovascular disease compared to 
logistic regression (LR), support vector machine (SVM), 
and naive Bayes (NB). The algorithm reduced the variance 
more than other methods (Geurts et al. 2006). The extra 
tree classifier differs from other machine learning algo-
rithms because it separates nodes by selecting cut-points 
entirely at random and utilizes the whole training sample 
to construct the trees (Ampomah et al. 2020).

Delineation of Suitable Areas for Combine Harvester

A total of 23 soil properties were collected from the rice 
fields after the rice harvesting operation of the combine har-
vester. Seven thematic layers were generated from the soil 
property analysis: (1) sand, (2) silt, (3) clay, (4) bulk den-
sity, (5) soil moisture, (6) dry density of soil, and (7) water 
holding capacity. The raster values of the selected thematic 
layers were extracted from the sampling points using the 
extraction by mask technique. The relative importance of the 
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thematic layers was identified based on the raster values of 
the selected thematic layers as input variables, and ground 
truth data (binary data) were used as target variables. The 
extra tree classifier algorithm was used to run the model 
based on the input and target variables in a Python Jupiter 
notebook environment. Finally, the weighted overlay analy-
sis method was used to make the final map. The weighted 
overlay analysis reclassified the criteria of each thematic 
layer on the same scale according to the relative importance 
of land suitability. The values 1 to 4 were assigned to each 
class of the thematic layers, where 1 indicates the least suit-
able land, and 4 shows the most suitable land. The suitability 
index map was generated using the following formula:

SI is the suitability index map, C is clay, S is sand, Si is 
silt, B is bulk density, M is soil Moisture content, D is dry 
soil density, and W is the water holding capacity, respectively. 
The w and c indicate the weight and subclass of each thematic 
layer, respectively. However, the final map was projected to 
the WGS_1984_UTM_Zone_46N coordinate system, with a 
pixel cell size of 10 m × 10 m. The majority filter was used 

(5)
SI = (Cc ∗ Cw + Sc ∗ Sw + Sic ∗ Siw + Bc ∗ Bw +Mc ∗ Mw + Dc ∗ Dw +Wc ∗ Ww)

to replace cells in a raster-based on most of the cells around 
them. The output raster data were reclassified into four suit-
ability classes, including very low, low, moderate, and very 
high, using natural break classification techniques to produce 
the final land suitability map for the combine harvester. The 
overall methodology of the study is shown in Fig. 2.

Model Validation

The datasets were divided into training and testing at 70% 
and 30%, respectively (Almansi et al. 2021). There is no 
generally accepted mechanism for partitioning a sampling 
dataset. It usually depends on the quantity and quality of 
the sample data (Kalantar et al. 2020). This study evaluated 
the classification results by evaluating several performance 
metrics; overall accuracy, precision, recall, F1 score, and 
threat score. The receiver operating characteristics (ROC) 
were also used to check the model’s performance. The ROC 
analysis measured the model’s sensitivity, specificity, and 
area under the curve (AUC). The confusion matrix was used 
to predict binary scores for all selected parameters. Most 
of the time, the sensitivity, or true positive rate (TPR), and 

Fig. 2  Flow diagram of the method used in this study
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specificity, or true negative rate (TNR), were used to sum up 
how well the confusion matrix predicts (Chicco et al. 2021). 
The function of the confusion matrix is shown in Table 2.

Tp is the true positive, Fp is the false positive, Fn is the false 
negative, and Tn is the true negative. The statistical values of 
interpolated rasters were helpful when figuring out how well the 
interpolation worked for soil thematic layers (An et al. 2016). The 
mathematical formula of the performance metrics is given below:

Overall Accuracy

The accuracy is the proportion of classified samples to the 
total number of samples in the assessment data. This accuracy 
measure is most commonly utilized in machine learning to get 
good precision. The accuracy is limited from 0 to 1, while 1 
indicates correctly predicting all positive and negative samples, 
and 0 shows neither the positive nor negative samples.

Precision

Precision is the ratio of successfully predicted samples by 
the entire sample allocated to a class. The accuracy is limited 
from 0 to 1, where 1 indicates all accurately predicted 
samples and 0 indicates inaccurate predictions in the class.

Recall

The recall is known as the sensitivity or true positive rate 
(TPR) and is computed as the proportion of identified 
positive samples and all samples allocated to the positive 
samples. The recall value is limited from 0 to 1, where 
1 represents predicting a positive class, and 0 implies an 
inaccurate prediction of all positive samples.

(6)Accuracy =
TP + TN

TP + TN + FP + FN

(7)Precision =
TP

TP + FN

(8)Recall =
TP

TP + FP

F1 Score

The harmonic mean of recall and precision was used to 
get the F1 score. The F1 score depends on the positive and 
negative sample classes and helps to modify the sample 
classes. For instance, large negative samples are the majority, 
and the classifier is influenced by the negative sample class, 
resulting in a low F1 score. The F1-score ranges from 0 to 1, 
where 1 represents the most excellent recall and precision, 
and 0 illustrates no precision or recall.

Threat Score

The threat score is the proportion of accurately positive 
samples to the total of accurately predicted positive 
samples and all wrong predictions. It balances false rates 
and missing events and eliminates only accurately indicated 
negative samples. The threat score ranges from 0 to 1, with 
1 representing no error predictions in either class and 0 
meaning no correctly predicted positive samples.

Results

Features Relative Importance

Figure 3 shows the relative importance of selected thematic 
layers. Based on the analysis conducted using the extra tree 
classifier, the moisture content (25%) and dry density (19%) 
were the most critical factors affecting the harvesting opera-
tion of a combine harvester in the field. The results indicate 
that the amount of moisture in the soil and the soil’s density 
are significant factors that affect the harvester’s performance. 
The water holding capacity (15%), bulk density (12%), clay 
(11%), silt (10%), and sand (8%) were found to have varying 
levels of importance, with silt and sand having the lowest 
impact on the harvester’s performance compared to other 
factors. Overall, the results suggest that understanding the 
soil’s moisture content and density is essential to optimiz-
ing the performance of combine harvesters in the field. This 
information can help farmers and agricultural workers adjust 
their operations and optimize their harvesting processes to 
achieve better yields and productivity.

(9)F1 score = 2 ×
PPV × TPR

PPV + TPR

(10)Threat score =
TP

TP + FN + FP

Table 2  An example of a confusion matrix

Actual

Predicted Positive class Negative class
Positive class Tp Fp
Negative class Fn Tn
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Assessment of Soil Thematic Layers

Sand, Silt, and Clay

Table 3 provides information on the assigned rating and 
relative weight of soil physical properties used to create the 
land suitability map. The soil physical properties considered 
include clay, silt, and sand content, with variations rang-
ing from 13.02 to 19.98%, 40.25 to 51.31%, and 33.38 to 
39.23%, respectively. The fields with a higher proportion 
of clay and sand were deemed more suitable for combine 
harvester operations compared to fields with a lower ratio of 
these components. The findings suggest that a certain level 
of clay and sand content in the soil might provide better con-
ditions for combine harvester operations. These soils might 
have characteristics that make them less prone to clogging 
or other operational issues that can arise with higher silt 
content or extremely fine-textured soils. The higher propor-
tion of silt seems to have a positive effect on the operation 
of the combine harvester by potentially offering smoother 
conditions for the machinery. Overall, the assigned rating 
and relative weight of soil physical properties provide valu-
able information on the suitability of a field for combine 
harvester operations. Figure 4 shows the details of clay, silt, 
and sand in the study region.

Soil Bulk Density

The soil bulk density ranged from 1.34 to 1.75 (g/cc) and 
was categorized into five sub-classes: very low (1.34 to 
1.47), low (1.48 to 1.53), moderate (1.54 to 1.56), high 
(1.57 to 1.61), and very high (1.62 to 1.75). The spatial 
distribution of these sub-classes revealed that 2.17% of 
the land (0.21  km2) had very low bulk density, 8.68% 
(0.85  km2) had low bulk density, 56.80% (5.54  km2) 
had moderate bulk density, 29.72% (2.90  km2) had high 
bulk density, and 2.63% (0.26  km2) had very high bulk 

density. The study results suggest that lands with higher 
bulk density are suitable for combine harvester opera-
tions in fields, while lands with lower bulk density are 
unsuitable for such operations. The bulk density map of 
the study area is shown in Fig. 5(A). It can assist farmers 
and agricultural workers in making informed decisions 
about land suitability for combined harvester operations. 
Farmers can optimize their machine operations by under-
standing their fields’ soil bulk density for better harvest-
ing efficiency.

Soil Moisture Content

Figure  5(B) displays the moisture content map of the 
study area. The findings demonstrate that the soil 
moisture content significantly impacts the combine 
harvester’s harvesting operation. The collected soil 
samples had a moisture content ranging from 22.48 to 
50.74%. The spatial distribution of soil moisture content 
was categorized as very low 6.98% (22.25–30.99), low 
28.59% (31.00–33.68), moderate 46.38% (33.69–36.48), 
high 14.15% (36.49–41.30), and very high 3.90% 
(41.31–50.82), respectively. The study revealed that 
most of the study area had low soil moisture content, 
particularly in the southeast, while regions with moderate 
soil moisture content were mainly in the northwest 
and center of the study area. The results suggest that 
higher moisture content makes the land unsuitable for 
smooth combine harvester operation during harvesting, 
while lower moisture content makes the land suitable. 
Thus, monitoring and managing soil moisture content 
is essential to optimizing combine harvester operations 
and achieving better productivity. The moisture content 
provides valuable information for farmers and agricultural 
workers to assess the suitability of their fields for combine 
harvester operations.

Fig. 3  Relative importance of 
selected thematic layers

Sand

Silt

Clay

Bulk Density

Water Holding Capacity

Dry Density

Moisture Content

0 0.05 0.1 0.15 0.2 0.25 0.3

T
h
em

at
ic

 L
ay

er
s

Relative Importance (%)



 Journal of Geovisualization and Spatial Analysis            (2023) 7:27 

1 3

   27  Page 10 of 18

Soil Dry Density

Figure 5(C) shows the soil dry density map in the study area. 
Soil dry density is essential when determining land suitabil-
ity for combine harvester operations. The results show that 
the study area has a range of dry soil density from 0.93 to 
1.42 (g/cc). The spatial distribution of dry density reveals 
that the areas with low and very low dry density are mainly 
in the southeast, covering 3.99% (0.39  km2) and 13.88% 
(1.33  km2) of the study area, respectively. The moderate dry 
density areas cover the most significant portion of the study 
area, 51.46% (4.96  km2), mainly located in the northwest and 
central parts. The high and very high dry density areas cover 
26.19% (2.52  km2) and 4.48% (0.43  km2) of the study area, 

respectively. The results suggest that the higher the soil dry 
density, the more suitable the land is for combine harvester 
operations, while lower soil dry density indicates unsuitabil-
ity. Depending on other factors such as moisture content and 
bulk density, the areas with moderate to high soil dry density 
may be suitable for combine harvester operations. Therefore, 
the study area’s dry soil density is crucial when assessing 
land suitability for combine harvester operations.

Soil Water Holding Capacity (WC)

Soil water holding capacity (WC) is a vital soil physical 
property for determining the land suitability for combine 
harvester operations. As shown in Fig. 5(D), the spatial 

Table 3  The assigned weight 
and rank to different thematic 
layers and their sub-classes 
using natural breaks (Jenks) 
classification

Thematic layer Break values Sub-class Assigned rank Relative weight

Clay 13.02–15.75 Very low 5
15.76–16.52 Low 4
16.53–17.06 Moderate 3 11.76
17.07–17.93 High 2
17.94–19.98 Very high 1

Sand 33.38–35.24 Very low 5
35.25–35.97 Low 4
35.98–36.64 Moderate 3 8.70
36.65–37.53 High 2
37.54–39.23 Very high 1

Silt 40.25–44.72 Very low 1
44.73–46.11 Low 2
46.12–47.06 Moderate 3 9.72
47.07–48.49 High 4
48.50–51.31 Very high 5

Bulk density 1.34–1.48 Very low 1
1.49–1.54 Low 2
1.55–1.57 Moderate 3 12.41
1.58–1.61 High 4
1.62–1.75 Very high 5

Soil moisture 22.25–30.99 Very low 5
31.00–33.68 Low 4
33.69–36.48 Moderate 3 23.86
36.49–41.30 High 2
41.31–50.82 Very high 1

Dry density 0.93–1.06 Very low 1
1.07–1.14 Low 2
1.15–1.18 Moderate 3 17.66
1.19–1.24 High 4
1.25–1.43 Very high 5

Water holding capacity 61.37–65.79 Very low 1
65.80–68.82 Low 2
68.83–70.20 Moderate 3 15.88
70.21–71.29 High 4
71.30–75.99 Very high 5
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distribution of soil WC in the study area varied from 61.43 
to 76.00%. The results indicated that a significant portion 
of the study area had very low WC, which covered 1.54% 
(0.15  km2) of the site. The low WC covered 15.63% (1.51 
 km2) of the area, and the moderate WC covered 63.78% 
(6.15  km2). Additionally, high and very high WC covered 
15.64% (1.51  km2) and 3.41% (0.33  km2) of the study area, 
respectively. The areas with higher WC were considered 
suitable for combine harvester operations, while those 
with lower WHC were unsuitable. The moderate WC was 
found in the northwest and central parts of the study area.

Assessment of the Topographic Slope

The slope distribution in the study area varied from 0 to 22.19%, 
as shown in Fig. 6. Based on the findings, the slope distribu-
tion was as follows: very low 27.08% (2.62  km2), low 36.51% 
(3.53  km2), moderate 23.84% (2.30  km2), high 10.34% (1.00 
 km2), and very high 2.23% (0.22  km2). In this study, agricultural 
land was distinguished from other land uses by using gentle 
slope (< 5%) areas, whereas lands with steeper slopes (> 5%) 
were masked out from the analysis. The findings indicated that 
65.40% (6.32  km2) of the area was dominated by gentle slopes 

Fig. 4  Spatial distribution of the percentages of soil texture (clay, silt, and sand) in the study region
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(< 5%). In comparison, 34.60% (3.35  km2) of the study area was 
composed of steeper slopes (> 5%), which were predominantly 
in non-agricultural areas such as settlements, forests, and other 
land covers. The higher slope areas were mainly in the southeast 
and central regions and some western parts of the study area.

Assessment of Land Suitability Map for Combine 
Harvester

Figure 7 shows the spatial distribution of the combined 
harvester’s land suitability map. The land suitability map 

considered all the soil physical properties analyzed in the 
study, including soil texture, bulk density, moisture con-
tent, dry density, and water holding capacity. The resulting 
map showed the different levels of suitability for combine 
harvester operations. The land suitability map was divided 
into four groups: deficient, low, moderate, and very high. 
The map shows that a significant portion of the study area, 
19.84% (1.90  km2), is very high suitable for combine har-
vester operations. These areas are mainly located in the 
southwest and east, with dominant agricultural lands. The 
moderately suitable areas cover around 43.52% (4.17  km2) 

Fig. 5  Spatial distribution of soil bulk density, moisture content, dry density, and water holding capacity over the study area
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Fig. 6  Spatial distribution of 
slopes in the study area

Fig. 7  Spatial distribution of 
land suitability classification 
map for combine harvester
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of the study area, with scattered locations in the southeast 
and mainly in the northwest. The less suitable areas are 
concentrated in the study area’s west, northeast, and central 
regions, covering around 27.42% (2.62  km2). The signifi-
cantly less suitable areas cover only 10% (0.88  km2) of the 
study area. Overall, the land suitability map provides valu-
able information to farmers and land managers for optimiz-
ing the use of agricultural machinery in the study area. It 
can help them make informed decisions about crops, tillage 
practices, and other land management strategies based on 
the land’s physical properties.

Model Validation

The overall accuracy, precision, recall, F1 score, and threat 
score were 71%, 85%, 79%, 81%, and 69%, respectively. The 
confusion matrix served as a pre-modeling evaluation that 
was utilized to forecast the appropriateness of the land using 
the conditioning factors. The actual positive and accurate 
negative rate graphs illustrated how well the models dis-
criminated good locations from those that were not appropri-
ate. Taking into account the ROC curve, the model had an 
accuracy of 60% (Fig. 8). The selected model demonstrated 
a strong correlation between the influencing factors and the 
locations determined to be appropriate. According to the 
findings, the method used to establish which fields would be 
suitable for a combine harvester would be beneficial. It could 
be used to increase agricultural production in Bangladesh. 
The confusion matrix, the ROC curve metrics, and the area 
under the curve (AUC) values were used to determine how 
well the model performed. Table 4 presents the results of a 
correlation analysis between the land suitability categoriza-
tion map and the field conditions.

Discussions

This study investigated the development of a land suitability 
classification map for the combine harvester at Kaliakoir, 
Gazipur district, Bangladesh. Eight thematic layers, 
including sand, silt, clay, soil bulk density, soil moisture 
content, dry soil density, soil water holding capacity, 
and topographic slope, were selected, and the weights of 
each parameter were calculated using a machine learning 
algorithm (i.e., extra tree classifier). The resulting output 
showed that selected parameters influence land suitability 
classification. However, the most significant were soil 
moisture content, dry soil density, soil water holding 
capacity, and soil bulk density. The results indicated that 
the study area has reasonable prospects for use of combine 
harvesters for rice harvesting. The study area was covered by 
moderate zone of 43.52% (4.17  km2) for combine harvester 
operation.

A machine learning-based feature importance was used 
to identify and rank the most important features or variables 
that contributed to the performance of the model. The 
ranking can be based on a numerical score, a percentage, or 
a visual representation such as a bar chart or a heat map. The 
interpretation of feature importance depends on the specific 
model and the domain of the problem. In some cases, the 
most important features may be evident and intuitive, while 
in others, they may reveal unexpected or counterintuitive 
relationships between the features and the target variable. 
In this study, the soil moisture content (23.86%) was the 
most important factor, whereas sand (8.70%) was the least.

Soil moisture was the most important feature that affected 
the efficiency and effectiveness of combine harvesters, as it 
can influence the machine’s ability to navigate the soil and 
harvest crops. Generally, areas with well-drained soils that 
maintain moderate moisture are considered the most suit-
able for combine harvester operation. This is because drier 
soils can become complex and compact, making it easier for 
the machine to navigate. At the same time, wetter soil can 
become muddy and boggy, causing the machine to become 
problematic due to trafficability issues when harvesting rice 
crops. Soil dry density (17.66%) was the second key feature 
for identifying areas suitable for combine harvester opera-
tion. The result indicated that the dry-density soils were too 
loose and prone to erosion. The soils with a higher dry den-
sity were compacted, and easy to harvest rice smoothly. The 
suitable dry density values ranged from 1.25 to 1.43 (g/cc) 
and were considered the most appropriate for the smooth 
operation of the combine harvester machine. Soil water hold-
ing capacity (15.88%) was the third most important feature 
for smooth combine harvester operation, as it can provide 
adequate moisture to crops even during harvesting. These 
soils are typically well-drained and have a high percentage Fig. 8  ROC curve for validation of land suitability map for the com-

bine harvester
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of organic matter, which helps retain moisture and provides 
a favorable environment for plant growth. The soils with a 
lower water holding capacity were found unsuitable for the 
combine harvester operation, whereas higher water holding 
capacity indicated the most suitable.

Soil bulk density (12.41%) was the fourth most important 
feature for identifying suitable areas for combine harvester 
operation. Generally, soils with increased bulk density sup-
port the machine’s wheels while allowing for efficient har-
vesting. The areas with low soil bulk density may not be 
suited since they are loose and prone to erosion, which may 
pose problems for combine harvester operation. The soils 
with high bulk density were well compacted and easy for the 
machine to operate. Therefore, identifying areas with a suit-
able range of soil bulk density is essential for efficient and 
effective combine harvester operation. The clay (11.76%), 
silt (9.72%), and sand (8.70%) were the fifth, sixth, and 
seven essential factors affecting the ability of a combine har-
vester to operate effectively. Soils with a high percentage of 
sand may not be suitable for combine harvester operation, 
as the soil may be too loose and prone to erosion. Similarly, 
soils with a high percentage of clay may need to be lighter 
and more accessible for the machine to navigate, especially 

in wet conditions. In contrast, soils with a low percentage of 
silt are often considered ideal for combine harvester opera-
tion, as they provide good support for the machine’s wheels 
and allow for efficient harvesting.

Topographic slope can be important for identifying suitable 
areas for combine harvester operation. Soils with a topographic 
slope of less than 5% were considered the most suitable for com-
bine harvester operation, because the machine can easily navigate 
flat or gently sloping terrain, which can help to enhance effi-
ciency and reduce the risk of damage to the machine. However, 
soils with a slope greater than 5% may be less suitable for com-
bine harvester operation, and the machine had trouble navigating 
steep or uneven terrain. Farmers may need to use lightweight 
harvesting machines in these areas to manage crops effectively.

The model prediction was verified by employing a ROC/
AUC evaluation, which measured the accuracy of the 
model’s predictions (Yamusa & Ismail 2023). The applied 
approach showed an overall accuracy of 71% when validated 
with ground truth data. On the other hand, the model led 
to a land suitability classification map with ROC values of 
60%. The model’s prediction accuracy can be categorized 
as satisfactory in both cases. Prediction accuracy was 81% 
for the threat score, 79% for the F1 score, 85% for precision, 

Table 4  Details of field 
observation and pixel 
correlation with resulting land 
classification map

1, 2, 3, and 4 indicate the very high, moderate, low, and very low suitability land classes

Field condition Classification map

Site No Latitude Longitude Suitability 
scale

Description Suitability 
scale

Remarks

1 24° 11′ 33.40″ N 90° 16′ 45.47″ E 1 Suitable 2 Agree
2 24° 11′ 26.93″ N 90° 16′ 31.38″ E 0 Not suitable 3 Agree
3 24° 11′ 28.30″ N 90° 16′ 50.92″ E 1 Suitable 4 Disagree
4 24° 11′ 31.55″ N 90° 17′ 10.29″ E 1 Suitable 1 Agree
5 24° 11′ 37.92″ N 90° 16′ 59.36″ E 0 Not suitable 1 Disagree
6 24° 11′ 13.96″ N 90° 15′ 47.09″ E 1 Suitable 1 Agree
7 24° 11′ 22.56″ N 90° 16′ 10.01″ E 1 Suitable 1 Agree
8 24° 11′ 15.48″ N 90° 16′ 60.60″ E 0 Not suitable 2 Disagree
9 24° 11′ 30.71″ N 90° 16′ 22.71″ E 1 Suitable 1 Agree
10 24° 10′ 50.04″ N 90° 16′ 11.35″ E 0 Not suitable 3 Agree
11 24° 11′ 33.54 N 90° 15′ 52.87" E 0 Not suitable 4 Agree
12 24° 11′ 22.10″ N 90° 17′ 20.77″ E 1 Suitable 4 Disagree
13 24° 11′ 53.28″ N 90° 16′ 54.36″ E 0 Not suitable 3 Agree
14 24° 11′ 46.28″ N 90° 17′ 60.61″ E 0 Not suitable 4 Agree
15 24° 10′ 58.79″ N 90° 15′ 41.09″ E 1 Suitable 1 Agree
16 24° 10′ 53.49″ N 90° 16′ 43.68″ E 1 Suitable 2 Agree
17 24° 11′ 13.54″ N 90° 16′ 19.60″ E 1 Suitable 1 Agree
18 24° 11′ 37.27″ N 90° 16′ 10.24″ E 0 Not suitable 4 Agree
19 24° 11′ 32.85″ N 90° 16′ 26.55″ E 1 Suitable 1 Agree
20 24° 10′ 39.01″ N 90° 16′ 15.92″ E 1 Suitable 2 Agree
21 24° 10′ 27.58″ N 90° 15′ 56.24″ E 1 Suitable 1 Agree
22 24° 11′ 90.20″ N 90° 16′ 90.25″ E 0 Not suitable 4 Agree
23 24° 10′ 28.00″ N 90° 16′ 50.84″ E 1 Suitable 2 Agree
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and 79% for recall, respectively. However, using the selected 
model, a robust association was found between the relevant 
parameters and the ground truth data. The GIS and machine 
learning-based feature importance techniques for delineating 
the land suitability classification map for combine harvesters 
were practical methods for sustainable agriculture and an 
essential strategy for reducing poverty, harvest time, and 
food insecurity by increasing profitability (Yang et al. 2023).

Conclusions

The land suitability map for rice harvesting was developed by 
taking into account various factors such as sand, silt, and clay 
content, bulk density, moisture levels, dryness, water holding 
capacity, and slope. The study found that 43.52% of the region 
was within the “moderately suitable zone” for using a combine 
harvester for rice harvesting. The effectiveness of a combine 
harvester in the studied region was primarily impacted by soil 
moisture and dry density. The accuracy of the land suitabil-
ity classification map was ensured by employing a confusion 
matrix with conditional layers. The final output map yielded 
an accuracy score of 71%, a precision score of 79%, a recall 
score of 81%, an F1 score of 81%, and a threat score of 69%. 
Furthermore, according to receiver operating characteristic/area 
under curve (ROC/AUC) analyses, the research findings sug-
gested an overall accuracy rate of 60%. Despite these encourag-
ing results, the study had certain limitations including, lack of 
combine harvester, accessibility to fields, labor and time con-
straints, and costs. Future research will refine these results by 
considering additional factors such as soil depth, plow pan, and 
compaction. Regardless of its limitations, the proposed method 
provides valuable insight into the most effective locations for 
the use of a combine harvester for rice harvesting. This study 
has the potential to enhance mechanization and improve food 
security in Bangladesh. It can benefit stakeholders, farmers, and 
policymakers involved in the commercial use of combine har-
vesters across the nation by guiding strategic decision-making 
for future combine harvester operations.
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